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1. INTRODUCTION 

 

Although no evidence has been found that physical meaning can be ascribed to the 
NUT metric this metric is of mathematical interest, because it is a generalization of the 
Schwarzschild metric and is in close relation with the Reissner-Nordström metric. It is 
mathematically neat to supplement the NUT metric with an interior. The model we present 
fits in the Kerr family and is reduced to the Schwarzschild metric putting the NUT 
parameter zero. 

 According to our previous paper we set up the model in three steps. In Sec. 2 we fit 
a cap of a sphere to the surface of the exterior solution described in [1]. The geometry of 
this ansatz is analyzed in Sec. 3. In Sec. 4 we gauge the rods and clocks of the model. 
This leads us from the reduced metric to the seed metric. In Sec. 5 we gain the interior 
NUT with an intrinsic transformation invoking the rotational content of the model. We 
calculate the field strengths, the field equations, and the stress-energy tensor. The stress-
energy tensor contains Schwarzschild-like contributions, and in addition, a monopole term 
similar to the magnetic monopole term sometimes discussed in electrodynamics. 

 

2. BASICS OF THE NUT INTERIOR 

 

The underlying geometrical object for the NUT interior is the cap of a sphere. The 
construction of this cap is analogous to the one of the Schwarzschild interior [2]. The R  

are the radii of a family of spheres. With the embedding condition 

 
g const. R R  (2.1) 

we select from this family that cap which is suitable for matching the exterior solution. The 
polar angle is  and is related to the standard-Schwarzschild co-ordinate by 

 r sin R . (2.2) 

Thus, one has 

 
2

2

r r
sin , cos 1    

R R
. (2.3) 

The reduced metric has the form 

 2 2 2 2 2 2 2 2 2 2 2 2

Tds d sin d sin sin d a dit         R R R . (2.4) 

With the help of (2.2) it can be written as 
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 2 2 2 2 2 2 2 2 2

T2

2

1
ds dr r d r sin d a dit

r
1

      


R

. (2.5) 

The time-factor of the metric is 

    T T g g g

g

1
a a , cos cos        

  
R R R . (2.6) 

g  is the aperture angle of the cap matching the interior to the exterior,  
gr  the position of 

the boundary surface, and 
g  the radius of curvature of the radial curves of the exterior 

surface at the boundary surface 

 

2

g 2

g g2

g

2Mr l
r

Mr l


 


 . (2.7) 

It differs from the radius of curvature of the Schwarzschild solution by the NUT parameter l. 
Putting l zero, one obtains the corresponding value of the Schwarzschild geometry 

3

g g2r M  . Interpreting the time interval by 

 
gdit di    (2.8) 

one obtains for the time-like part of the line element 

  4

g g gdx cos cos di       
 

R R . (2.9) 

Actually (2.9) represents the line elements of two concentric pseudo circles within the 
framework of a double surface theory [2]. Defining the constant auxiliary quantity 

 

2

g2

g 2

g

2Mr l
2

Mr l


 


 (2.10) 

one is able to establish a closer relation between the quantities 
g  and R  

 

2

g2

g g g g 2

g

2Mr l
2

Mr l


   


R R  (2.11) 

and to write the time factor of the reduced metric in a Schwarzschild-like form 

  2 2

T g g g

1
a 1 2 cos cos

2

       
 

  (2.12) 

by the use of the embedding condition (2.1). (2.11) describes the ratio of 
g  and 

gR . From 

(2.10) it is obvious that one obtains for the Schwarzschild case 2

g 1  . Thus, one gets the 

well-known Schwarzschild factor 
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 T g

1
a 3cos cos

2
      . (2.13) 

It should be noted that one can obtain from the reduced NUT metric our interior Reissner-
Nordström metric [3] by putting l = ie. The design of the reduced NUT model is akin to the 
Reissner-Nordström interior. From (2.7) and (2.11) one derives the junction condition 

 

2

g

g
2

g

r

2Mr l



R  . (2.14) 

If one has decided for the junction position 
gr  one can calculate the radius assigned to the 

selected cap. 

From (2.4) we infer the operators 

 
0 1 2 3 4

T

, , , ,
sin sin sin a it

    
         

     R R R R
 (2.15) 

that we need for the calculation of the field strengths. We emphasize that the time factor is 
a function of R  and . As long as one describes the full geometry, the extrinsic and the 

intrinsic, R  has to be considered as a variable. Therefore, one has 

 T|0 T|1

g g

1 1
a cos , a sin    

 
 . (2.16) 

Now it is possible to calculate from the metric the 5-dimensional components of the 
field strengths (a = 0,1,…,4) 

 

a a

a a

g T g T

1 1 1
M ,0,0,0,0 , B , cot ,0,0,0

1 1 1 1 1
C , cot , cot ,0,0 , E cos , sin ,0,0,0

sin a a

   
     
   

    
         

      

R R R

R R R

. (2.17) 

By the use of the 5-dimensional graded derivatives [1,2], one obtains with (2.17) the 
curvature equations 

 

1 1

2 2

3 3

4 4

c c

a|||b a b |||c c

c c

a|||b a b |||c c

c c

a|||b a b |||c c

c c

a|||b a b |||c c

M M M 0, M M M 0

B B B 0, B B B 0

C C C 0, C C C 0

E E E 0, E E E 0

   

   

   

   

. (2.18) 

They are subequations of the identically vanishing 5-dimensional Ricci, which is the Ricci 
of the flat embedding space. With these quantities and relations, the basic structure of the 
interior NUT solution is entirely described. 
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3. THE REDUCED NUT METRIC 

 

In the preceding Section, a metric akin to the Schwarzschild interior metric was 

introduced. The difference of those two metrics mainly appear in the time factor 
Ta . From 

the Schwarzschild metric [2] we know that a single surface is not sufficient for embedding 
the model into a 5-dimensional flat space. The theory of double surfaces has to be applied. 
Therefore, we present this problem in more detail. The reduced model can be deduced 
from a pseudo-hyper sphere in the same manner as the Schwarzschild model. We 
concentrate on the time-like part of the metric. The time-like element on the pseudo-hyper 
sphere 

 4dX cos di   R  (3.1) 

is connected with the time-like element 4dx  of the physical surface by means of 

 4 4 4

4dX dx P . (3.2) 

4

4P P  is a component of the projectors a

bP , which transmutes the pseudo-hyper sphere 

into the NUT interior surface. Since 4dx  is known from (2.9) one can equate 

 
T gcos di a di     R P .  

and can make accessible the negative1 quantity 

 
g g gg T

cos 1

cosa
1

cos


   

   
  

 

R
P

R

R R

. (3.3) 

With this projector the components of the force of gravity are calculated from the 
corresponding components of the pseudo-spherical geometry 

 
a

1 1
E , tan ,0,0,0

 
   

 
P

R R
. (3.4) 

This projector makes it also possible to present the stress-energy tensor of the model in a 
plain form and to compare it with the Schwarzschild and Reissner-Nordström models. To 
obtain the  stress-energy tensor the 0-components of the Ricci have to be isolated and 
shifted to the right side of the field equations. The dimensional reduction yields 

                                            

1
 For 

T
a 0 . It should be noted that P  has a pole restricting the parameters to a physically reasonable 

range. 
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 

 

 

 

mn m n 0 0 0 0 0 0

m n 0 0 0 0 0 0

m n 0 0 0 0 0 0

m n 0 0 0 0 0 0

R m m M B M C M E

b b B M B C B E

c c C M C B C E

u u E M E B E C

  

  

  

  

. (3.5) 

Therein the unit vectors are 

        m m m mm 1,0,0,0 , b 0,1,0,0 , c 0,0,1,0 , u 0,0,0,0    .  

Contracting the above relation and exploiting the Einstein tensor one gets with the 0-
components of (2.17) 

 mn

0

p

p
T

p

 
 

 
 
 

 

. (3.6) 

The hydrostatic pressure  

   2

1
p 1 2    P

R
 (3.7) 

is formally identical with the ones of the Schwarzschild and Reissner-Nordström solutions, 

but contains via 
g  the NUT parameter. The energy density 

 0 2

3
 

R
 (3.8) 

is the same for the three models. 

In the last paragraphs the relation of the NUT solution with other solutions was 
discussed. Afore we address the proper interior NUT solution, we analyze the behavior of 
the reduced metric on the boundary surface, connecting the interior and exterior metric. 

The shortest way to do this, is to calculate the quantities 
Ta  and P  on the boundary 

surface 

 
gg

T g g

g

a cos ,   


R
P . (3.9) 

The curvature quantities B and C of (2.17) coincide immediately with the ones of the 
exterior solution if the standard co-ordinate (2.2) is used. Bearing in mind that the 0-co-
ordinates have opposite orientations in the two regions and that the angles  and   have 

opposite signs we get 

 g

a g

g g

1 1
E , tan ,0,0,0

  
   

   

, (3.10) 
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an expression known from the exterior solution. If the components of the field equations 
match on the boundary surface this will be valid also for the metrics and their first 
derivatives. In general, this is presupposed for matching solutions. At first, one obtains 
from (3.7) 

 
g

g 2

g g

1
p 1 2

 
    

  

R

R
 . 

Taking into consideration the value (2.11) of 
g , the junction condition (2.14), and the 

definition 

 
2

l

r
    

defined in our previous paper, we finally get the first component of the stress-energy 

tensor of our reduced exterior solution. Since ext

0M  differs from int

0M  due to the different 

curvatures of the exterior and the interior surface this does not apply to the stresses on the 
surface. Moreover, the energy density has a jump. The first term of 

  
SS

g g 2

0 0 g       (3.11) 

corresponds to the Schwarzschild energy density. 

 

4. THE SEED METRIC 

 

In the preceding Sections the basic frame of the interior NUT solution was presented. 
Both the interior and exterior metrics establish an entire gravitational model endowed with 
a monopole field. To approach the proper interior solution we start with the reduced metric 
and we perform an intrinsic transformation. This transformation invokes a rule, how to 
measure local distances and time intervals. The transformed tetrads have the form 

 

41 2 3

1 3 42D D D D D T

D D

e e sin r A e sin sin A sin e a a

A r
, a

r A

              

  

R , R , R ,
 (4.1) 

and the metric reads as 

 2 2 2 2 2 2 2 2 2 2 2 2 2 2

D D Tds d sin d sin sin d a a dit            R R R . (4.2) 

In the radial direction of the surface one has 
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 1

D D D 1 D
2

2

1 1
dx d dr dr, a cos

cos rr
1


         

 


R

R

 (4.3) 

and in the direction of the of the local extradimension 

 0

D 0 D Ddx d a a sin
r

 
     

 
R ,

R
 . (4.4) 

For the present, the deformation factor 
D  is a function of R  and  

  D D ,   R  . (4.5) 

If one has selected a sphere from the family of spheres and has applied the embedding 

condition (2.1), 
D  will only be a function of  or r,  respectively. The deformation factor 

leads us to a new field strength 

 
2 2

a D|a 3 3

D

1 l l
D sin , cos ,0,0,0

A A

 
       
  

. (4.6) 

Moreover, all quantities of the reduced metric have to be worked up and listed 

 

D D
0 0 0 0

g T

D D
1 1 2 1

g T

a a1
M B C sin , E cos

A a

a a1 1
B C cos cos , C cot , E sin

r A A a

       


         


R
. (4.7) 

These are the quantities of the reduced metric enhanced by the deformation factor. They 
have to be rounded out with the quantity (4.6): 

 

2

D
0 0 0 0 0 0 0 0 0

2

D
1 1 1 1 1 1 2 2 1 1 1

a
*B B D sin , *C C D , *E E D

A

a
*B B D cos , * C C D , *C C , *E E D

A

       

        

. (4.8) 

We remind the reader that all these quantities do not describe a new surface. They 
are still defined on the surface of the reduced metric endowed with a new rule for 
measuring. Inserting these quantities into the Ricci one gains new subequations. To 
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facilitate the calculations, we note some formulae2. A quantity appears in these relations 
containing the monopole field strength of the exterior solution 

 2 23

23 D 23 2

l
ia cos , 2 ,

A
      H H H H . (4.9) 

Although the seed metric is a static metric it has rotational properties. They are 
intrinsic properties of the static geometry. The quantity H  differs from the analogous one of 
the exterior solution by the angular functions and they coincide on the boundary surface of 
these two solutions. For the subequations of the Ricci we note 

 

2

3

3

4

4

2

1||1 1 1 0 0

2

2||2 2 2 0 0 1 1

s s

||s s 0 0 0 0 1 1

2

1||1 1 1 0 0 0 0 1 1

s s 2

||s s 0 0 0 0 0 0 1 1

*B *B *B M *B

*C *C *C B C D D

*C *C *C M *C B C D D

*E *E *E M *E 3D E B D 2

*E *E *E M *E 2B E D E B D

   

    

    

     

      

H

H

H

H

. (4.10) 

Inserting into the Ricci 

 

2 2

3 3

4 4

s s

mn n||m n m n m ||s s

s s

n||m n m n m ||s s

s s

n||m n m n m ||s s

R *B *B *B b b *B *B *B

*C * C *C c c *C *C *C

*E *E *E u u *E *E *E

   
    

      

   
   
      

   
   
      

 (4.11) 

one obtains for the nonvanishing components 

 

 

 

 

 

11 0 0 0 0 0 0 0 0 1 1

2 2

22 0 0 0 0 0 0

2 2

33 0 0 0 0 0 0

2 2

44 0 0 0 0 0 0 0 0 0 0

R M *B M *C M *E 3D E B D

R *B M *B C *B E

R *C M *C C *C E

R *E M *E B *E C E D B D

    

     

     

       

H

H

H

, (4.12) 

and for the stress-energy tensor 

                                            

2
         

2 4

2 2 2 2D D

0 0 0 0 0 02 2 2

2

2 2 2 2 2

1 1 D 1 1 1 12

2 2 2 2 2

1 1 1 1 D 23 23

2 2 2 2 2 2

1|1 1 1 0 0 D

a a1
M B sin , M *B sin , M D sin

A A

l
D D cos cos a cos *B D B D

A

B D cos , * B D a cos

D 3 *B D M D a cos sin

       

        

       

          

R

H H

H
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 

2 2

11 0 0 0 0 23 23

2 2

22 0 0 0 0 0 0 23 23

2 2

33 0 0 0 0 0 0 23 23

2 2

44 0 0 23 23

T 2 *B E B C cos

T 2M E M B 2D E cos

T 2M E M C 2D E cos

T 3M *B

      

       

       

     

H H

 H H

 H H

H H H

. (4.13) 

The stress-energy tensor has only diagonal components and is covariantly conserved. 

 

5. THE PROPER NUT METRIC 

 

Having defined a spacetime-dependent method of measuring on the surface an 
additional structure on this surface is implemented by an intrinsic transformation. Doing so 
only the time-like part of the metric alters 

  4

D Tdx a a 2il 1 cos d idt        . (5.1) 

It differs from the exterior solution by the gravitational factor 
Ta . The new tetrads read as 

 
 

 

3 4 4

3 3 D T 4 D T

3 4 4

D T
3 3 4

e A sin , e 2ila a 1 cos , e a a

1
e , e 2il 1 cos , e

A sin

     

       


 . (5.2) 

The Ricci-rotation coefficients have a further contribution 

 s s s s

mn mn m n n mH H u H u H u    (5.3) 

with the only component of H 

 
23 D TH ia a   . (5.4) 

The field equations are enhanced with3 

 
||

4

s

34 3 sR H . (5.5) 

Since the Maxwell-like equations 

 
||

4

s

n sH 0, rotH 0   (5.6) 

are satisfied no energy current exists in the interior of the source. The complete Ricci 
reads as 

                                            
3
 The 4

th
 graded derivative coincides with the space-like derivative. 
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||

4

2

s 2

mn mn (m n) s 2

2

0

H
R *R 2u H , R *R H

H

H

 
 

     
 
 

 

 (5.7) 

wherein 
mn*R  and *R  are the Ricci and the contracted Ricci of the seed metric. The 

stress-energy tensor reads as 

 s 2 2

mn mn m ns mn m n

1
G *T 2 H H g H u u H

4

 
     

 
. (5.8) 

mn*T  has the structure (3.6). The new NUT term is fairly Maxwell-like. If one has proved 

that 
mn*T  is free of divergence the total stress-energy tensor of the NUT model is free of 

divergence, which is a presupposition. The Maxwell-like NUT term vanishes separately 
due to the Maxwell-like relations (5.6) and 

 
4

mn||s m nsH *E H 0, divH *EH 0
   

    . (5.9) 

The NUT field has only one component pointing into the radial direction. One can 
recognize this by establishing the dual vector 

   1 *
D T 23

i
H H a a ,0,0,0 , H iH , 1,2,3

2

  


       . (5.10) 

Lastly, the values of the basic quantities are calculated on the boundary surface. The 
intricate quantity 

  g

T g g g g g g g

g

1
a cos cos cos cos          

  
R R  (5.11) 

becomes considerably simpler on the boundary surface. Therefore, the 0-components of 
the field strengths read as 

 g g g g D
0 0 0 g g 0

g g g

a1 1
M B C sin sin , E

A A
      


 . (5.12) 

Firstly, one has to bear in mind that g

0M  does not match the corresponding quantity of the 

exterior geometry because the exterior and interior surfaces are rather different and have 
different radial curvatures. Secondly, one has to take into consideration that the local 0-
directions of both co-ordinate systems have opposite orientations and the corresponding 
0-components of the two solutions have opposite signs. The 1-components read as 

 g g g D D
1 1 g g 1 g g

g g g g

a a1 1
B C cos cos , E tan tan

A A
         

 
. (5.13) 

Taking advantage of the fact that the NUT field strengths of both solutions have the 
same value 
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 g g

23 23H  H  (5.14) 

on the boundary surface, so that they go off continuously from the exterior to the interior 
region, one gets with the help of (4.13), (5.7), and (5.12) after some algebra 

 

2 2

Dg g

2 2g
Dg gmn

4 2

Dg g2

g

0

2a

2aT

3
a

 
 

  
   
 
  
   

  
  

R

 . (5.15) 

The radial hydrostatic pressure vanishes on the boundary surface. This provides the 
stability of the object. Putting zero the NUT parameter one obtains the Schwarzschild 
values of the stress-energy tensor on the boundary surface. 

It is of some interest to recast the stress-energy tensor to be comparable with the 
stress-energy tensor of the Schwarzschild model. If one takes the first component from the 
relation (4.13) of the seed metric and supplements it with (5.8) in order to get the proper 
NUT metric one attains 

 2 2

11 0 0 0 0 23 23 23 23T 2*B E B C H H cos       H H .  

For the reduced metric one reads from (3.4) 
0E  P R . One recognizes with (4.7) that for 

the proper metric one has to write 

 0 DE a 
P
R

. (5.16) 

For the first term of the above equation one obtains with (4.7) 

 
22

2 2 2D
0 0 0 0 0 0 D D2 3 2

al
2*B E 2B E 2D E 2 a i sin a 2 2 sin

A

 
           

 

P P
P P

R R R
  

and lastly, 

  SS 2 2 2

11 23 23 23 23T p 1 2 sin H H        P H H . (5.17) 

Here 

  
2

SS D

2

a
p 1 2    P

R
 (5.18) 

is the Schwarzschild contribution of the hydrostatic pressure. For the other components of 
the stress-energy tensor one obtains in the same manner 

 
 SS 2 2 2

22 33 23 23 23 23

2

44 0 23 23 23 23

T T p 1 2 sin H H

T 3 3H H

          

     

P  H H

 H H
 . (5.19) 
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Here 

 4

0 D 2

3
a 

R
 (5.20) 

is the Schwarzschild-like energy density. The last conversion makes clear the relations 
with, and differences from the Schwarzschild model. Only a few authors have dealt with 
the interior solution of the NUT metric. We have found a paper of Lukacs, Newman, 
Spaling, and Winicour [4]. They have described an interior model with a rigid rotating fluid. 

 

6. CONCLUSIONS 

 

We derived an interior solution for the NUT metric by geometrical means. Once 
known the geometrical structure of the exterior solutions, it is easy to derive the interior 
solution by exploiting the curvature properties of the exterior solution on the boundary 
surface. Since we have developed a general technique for constructing interiors for known 
solutions, which are embeddable in higher dimensional space, it is sufficient to use these 
results and adapt them to the NUT model. 
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