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1. INTRODUCTION 

 

In Sec. 2 we will study a static elliptical model which can be deduced from the Kerr 
metric by an anholonomic transformation. This model is not Ricci flat. It has some similarity 
to the Schwarzschild model and to the Kerr model as well. 

In Sec. 3 we will show that this model has a natural embedding in a flat five- 
dimensional space by utilizing the theory of double surfaces. 

In Sec. 4 we investigate the invariance properties of the elliptical static model by 
introducing freely falling reference systems. We demonstrate that the force of gravity is 
compensated by the acceleration of these systems. Tidal forces can be experienced by the 
falling observers. These forces will be represented by second-rank tensors. They will 
satisfy covariant field equations.  

 

2. THE STATIC MODEL 

 

In a former paper [1] we have shown that the Kerr metric could be written as  

 

 
2 2

2 12 22 3 4 2 3 4

R R S R Rds dx dx dx i dx a i dx dx                    (2.1) 

where  
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. (2.2) 

A and r are the major and minor semi-axes of the confocal ellipses of the Boyer-Lindquist 
elliptical co-ordinate system. a is the eccentricity of the ellipses, ω the observer’s angular 
velocity, and σ the observer’s distance from the rotation axis. 

In view of the fact that it is not possible to obtain from the Kerr metric a static metric 
by a Lorentz transformation the rotation is not attached to the geometry but geometrically 
implemented. The non-Lorentzian anholonomic transformation 
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 (2.3) 
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differs from a Lorentz transformation by the gravitational factors 
S  or 

Sa  respectively. 

Transforming the 4-bein system with (2.3) and 

 
'm mm'

i ime e    

the metric can be written as  

 
22 2 2 2 2 2 2 2 2 4 4

S R Sds a dr d d a dx , dx idt           . (2.4) 

and can be interpreted in a twofold way. i) The metric (2.4) is the anholonomic 
representation of the Kerr metric. The connexion coefficients have to be calculated by the 
inhomogeneous transformation law and this procedure leads to the field strengths of the 
Kerr metric again. ii) We leave it as written. Then (2.4) is the metric of a possibly new static 
elliptical model, which is not Ricci flat. It has some similarity to the Schwarzschild model 
and to the Kerr model as well. As the stress-energy-tensor does not seem to have a 
realistic interpretation it has no significance for the gravitation theory, but it could serve as 
a simplified model for studying some features of the Kerr geometry.  The visible advantage 
of the second interpretation is that we are able to embed this metric in a five-dimensional 
flat space by using the theory of double surfaces [1,2,3]. The main concern of this paper is 
to infer the five-dimensional field equations from (2.4) and to perform the dimensional 
reduction.  

 

 

3. THE EMBEDDING 

 

To embed the metric (2.4) in a five-dimensional flat space with the rectilinear 

orthogonal co-ordinate system a'X , a’ = 0’,1’, … , 4’ we start with a family of hyperspheres 
parametrized by 
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  . (3.1) 

The X are the radius vectors of the hyperspheres. The transformation to polar co-ordinates 
is performed with the matrix 
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a

cosi cos sini sin sini 0 0

sini cos cosi sin cosi 0 0

D 0 sin cos cos cos sin 0
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0 sin sin sin cos sin sin cos sin cos



      
 
       
       
 

          
          

 , (3.2) 

where the sequence of indices is 4,0,1,2,3. 

The flat space metric expressed by the above-defined polar co-ordinates reads as 

 2 2 2 2 2 2 2 2 2 2 2 2 2 2ds dX X d X sin d X sin sin d X cos di              . (3.3) 

Equ. (4.2) of paper [3] is extended by the last term of (3.3) and leads to an additional field 
strength on the hypersphere  

 4 4

40 41

1 1
X , X tan

X X
    . (3.4) 

To derive a double-surface theory from this single-surface theory one has to introduce an 
additional projector 

 4

4

S

X



P  (3.5) 

and we have to use the following expressions in the field equations 

      
2 2

1
4 4 4 4

4 [4|||1] S|1 4 [4|||2] S|2 S 2 2

S S

1 1 2r r a
, , r,

M r a

  
       
  

P P P P  . (3.6) 

S is the curvature vector field of the radial integral lines of an elliptically squashed surface. 

This field connects a corresponding surface generated by the evolutes of the radial lines of 
the first surface. 

By using (3.4) in c d c

ab a dbY XP we get a new contribution to the connexion coefficients Y  

 
c c c S

ab a b a b b

S S S

1 1 v
E u E u u u E , E , ,0,0,0

a

 
          

 (3.7) 

1E is the force of gravity derived in [1]. The relation to the angles ε of the ascent of the 

surface mentioned above is S Sv sin , a cos    . By setting the parameter of rotation a to 
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zero this quantity reduces to the force of gravity of the Schwarzschild theory. The Ricci 
tensor1 derived from 

 

g h d d
ghca b abc

d d f d f d d f

abc [b c [b c a]f [ba] fc fc [a|||b]|a]

R (X) R (Y)

R (Y) 2 Y Y Y Y Y X 0
   



      

P P

P
 (3.8) 

includes the subequations 

 

  
4 4

-1
c c c c d f

b|||a b a b a |||c c d b d b f [c |||a]E E E u u E E E 2 u E u u u E                
P P  . (3.9) 

They decouple from the Ricci tensor by 

 
4 4

c c c

b|||a b a b S|a |||c c S|c

S S

1 1
E E E E 0, E E E E 0       

 
 (3.10) 

where a ≠ 0. A dimensional reduction leads to  

  mn mn mn

1
R A T g T

2

 
   

 
 . (3.11) 

The four-dimensional Ricci tensor and the four-dimensional connexion coefficients are 
defined by 
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 , (3.12) 
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 
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 . (3.13) 

The field equations read as 

                                            
1
 We make use of the formulae listed in paper [3] 
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  
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  
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

 . (3.15) 

The first four lines on the right side of (3.15) include the generalized second fundamental 
forms of the physical surface. The two next lines are a contribution from the elliptical 
structure of the geometry and the last line results from the projection from the hypersphere 
of the single-surface theory to the elliptically squashed surface of the double-surface 
theory. With some algebra we simplify this expression to 

3
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  

 
 
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  
 

. (3.16) 

 

From this relation Tmn can be calculated. The quantities   and F are contributions from 
the BL-ellipsoid of revolution and they already occur in a flat elliptical system without 
rotation as explained in paper [5]. 
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4. THE FREELY FALLING SYSTEM 

 

Although we have simplified the rotating Kerr model to a static one, we hope to be 
able to extract further information from this model by introducing a freely falling system. 
We try to find an appropriate ansatz for the velocity of a freely falling observer in 
geometrical terms. Punsly [4] has made some efforts in studying this problem2. 

From the radial part of the Kerr line element [1] 

 
1

S Rdx a dr 
 

we have separated the two quantities  

 

 S R

A
, a

A


  


 (4.1) 

where aR is the elliptical factor discussed in [5] and  

 1

S Sa cos 
    


 (4.2) 

is related to the angle of the ascent of the radial curve of the physical surface [3]. We have 
already shown that aR is related to the angular velocity ω of the rotating system by  

 2 2 2

Ra 1    

and that αS can be interpreted as the Lorentz factor of a transformation to a freely falling 
system  

 S S
2

S

1 r 2M
, v

A r1 v
   


. (4.3) 

vS is the velocity of a freely falling observer incoming from infinity.  vS depends on the 
radial position but is independent of the angle  . It differs from the Schwarzschild velocity 

by the ratio of the axis of the BL-ellipses. As Sv sin  , the velocity vS is defined by the 

ascent of the physical surface. The BL-ellipse at the waist of the physical surface reads as 

 2 2 2r a 2Mr 0     . 

                                            
2 The distance of the rotating observer from the axis of rotation we define by 

2 2

r a sin    . Then σ is 

exactly the radius of curvature of the parallels of the BL-ellipsoid of revolution along which the observer 
travels. Due to this ansatz, we obtain results different from those of Punsly. 
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The solution 

 2 2

Hr M M a    (4.4) 

of this equation is called event horizon of the Kerr metric. If, as is the case  in our 
simplified model, there is no rotation, (4.3) shows that an ingoing particle has approached 
the speed of light (vH= -1) at the event horizon. The static horizon is prescribed by 

 2 2 2

0r M M a cos     , (4.5) 

which leads to  

 0 asin   . 

Rearranging this equation with the relations (2.2) we find for stationary observers that the 

orbital velocity [2] AC   has approached the speed of light AC 1    at the static horizon. 

By another arrangement the relativistic sum of the orbital and radial motion has 
approached the speed of light 

 2 2 2

S AC2

S

1
v 1   


 . (4.6) 

A freely falling observer being dragged by the rotating frames is not able to exceed the 
static horizon. The above considerations encourage us to use the definitions (4.3) for a 
Lorentz transformation from a static system (2.4) to a freely falling system and likewise 
from a stationary system (2.1) to a freely falling one: 

 1 1 4 4

1 S 4 S S 1 S S 4 SL , L i v , L i v , L   
          . (4.7) 

In previous papers [6,7] we have shown that the field equations and their 
subequations are invariant under Lorentz transformations. If we use a modified 
subsumption for the transformation law of the covariant derivation of tensors 

 m n s' s s' s ' n m s' s

m'|| n' m'n' m || n m'|n' s m'|n' s ' n'm' s ' n'm' n'm 's nmL L L A , A L A             (4.8) 

and if we define a new covariant derivative 

 
1

s ' s ' s ' s

m'|| n ' m'|n ' n 'm' s ' n 'm' s m'|n 'L , L L L       (4.9) 

the Ricci tensor can be written as 

 
11

s' s' r ' s'

m'n' m'n' s' n'||m' r 'm' s'n' m'n' s'||
R A A A A A A    . (4.10) 
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If the new subsumption is used, the subequations discussed in [3] and in the preceding 
Chapter turn out to be form invariant under passive Lorentz transformations. We obtain the 
same equations (3.14) wherein all the graded derivatives contain the Lorentz term L 
defined in (4.9). Now we consider the behavior of the subequations under active Lorentz 
transformations. We have to decompose the field equations with respect to the 
transformed tetrads 

 
1' 1' 4' 4'

n' 1 n' 4 n' n' 1 n' 4 n'

n' n n' n

'm L m L u {1,0,0,0}, 'u L m L u {0,0,0,1}

'b b {0,1,0,0}, 'c c {0,0,1,0}

     

   
 (4.11) 

All quantities transformed by (4.7) have an additional time-like component. They are 
interpreted as tidal forces. We prefer for them the tensor representation. Examining the 
Lorentz term in (4.9) we get 

 

4' 1'

4'1' 1' 1'4' 4' 4'

S S
m' S S s m'

S S S S S

L G , L Q G

1 v 1 v i
G ,0,0, i v , Q 0,0,0,

a a

  

   
        

     

 . (4.12) 

In the accelerated system the force of gravity (3.13) has the components 

 
4' 1' S S

4'1' 1' 1'4' 4' m' S S s

S S S S

1 v 1 v
E E , E E , E ,0,0, i v

a a

 
        

  
. (4.13) 

Although the acceleration G of the freely falling system is derived from the local rotation in 

the tangent space of the physical surface with S S Scosi , i v sini       and the force of 

gravity is derived from the ascent S Stan v a   of the physical surface, both quantities are 

numerically equal.  They enter the theory with opposite sign and compensate. Thus the 
freely falling observers can measure no radial acceleration. From now on we drop the 
primes of the indices.  

From the two above relations we get  

 
s s s s

mn mn m n m nL E 'm Q 'm 'm 'm Q   . (4.14) 

If we go over to the tensor representation, we obtain the tidal forces 

 11 4 22 4 33 4Q Q , Q B , Q C    . (4.15) 

Splitting the quantity N in space-like (bars) and  time-like parts (double-bars), we obtain 
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 s s s s ss s
nmn mn n m mn m n mn

s ss s s s

mn m n m n mn m n m n

n 1 1 n mn m 4 1 n n 4 4 n

N N 'u N 'u N 'u N N N

N 'm N 'm 'm 'm N , N 'u N 'u 'u 'u N

N m m N , N 'm m m N , N m m N

      
 

   

   

. (4.16) 

The graded derivatives for the accelerated systems are (α, β, γ =1,2,3) 

2 3
| | |, N B , N B C

    

                                        .(4.17) 

Making use of the relation  m n m n m n m nm m u u 'm 'm 'u 'u    we get from (3.11) and  (3.15) 

the field equations in terms of the accelerated observers  

2
2 2

2
2 2

3
3

s s

s s

B B b b B B b b B B B

N N 'm 'm N N 'm 'm N N N N N N

C C C c c C C C

N 'u N Q N N N N Q 'u Q Q

  
       

  
          

 
     

   

         

       
   

           
       

       
   

       
1

T g T
2

 

 
       

 

, (4.18) 

n

nN N N Q Q T 'u
   

       
        

  
 , (4.19) 

2 2 3

2 2

s s s

s 11 s 22 s 33

m

m[ ]

N 'u N Q B 'u B Q C 'u C Q

N N N N 2Q N T 'u

     

  
      

         
          

      
 

 , (4.20) 

   s m n

mns

1
N N N Q 'u Q Q T 'u 'u T

2

  
   

              
 . (4.21) 

Although we have reduced the rotating Kerr model to a static one, we can draw out 
from this model a lot of information that will be valid in the rotating version, too. In a former 
paper [4] we have studied more general transformations to accelerated systems, which 
could be also applied to the present model.  
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