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Abstract: We show that the Einstein tensor of the Kerr model can be represented in two 
parts, one originating from the static elliptical geometry and the second describing the 
rotational part, which is attached to the static part by an anholonomic transformation. 
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1.  INTRODUCTION 

In earlier papers [1], we have systematically developed the Kerr model. We started 
from a flat elliptic-hyperbolic geometry and pulled up a surface on it in a 5-dimensional flat 
embedding space similar to the Flamm paraboloid of Schwarzschild geometry. Finally, we 
implemented rotational effects in the static model using an anholonomic transformation. 
The resulting model is known as the Kerr model, which describes the external field of a 
rotating stellar object. We have made the remarkable observation that the Einstein tensor 
of the static auxiliary metric and the part added by the anholonomic transformation are 
formally identical. It is evident that the elliptic-hyperbolic geometry already contains 
rotational elements. In the following sections, we aim to address this, whereby much is 
only sketched so that the actual problem is not relegated to the background by the large 
amount of formulae. For formal details on the calculations of the field quantities and 
Einstein's field equations, refer to [1] for a detailed description of the Kerr problem. 
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2. THE STRUCTURE OF THE KERR MODEL 

The Kerr model is based on an axially symmetrical solution of Einstein's field 
equations. It describes the field of a rotating stellar object. By tradition, the line element of 
the model is written in Boyer-Lindquist coordinates. However, we prefer a different notation 
because, in the Boyer-Lindquist form, variables are summarized as quantities to which no 
geometric meaning can be assigned. 

We base the metric exclusively on quantities that have a clear geometric meaning. 
For example, the line element of an oblate ellipsoid of revolution in polar coordinates is 

 r, ,   

 2 2 2 2 2 2 2

Rds a dr d d     . (2.1) 

Here is 

 2 2 2 2 2 2 2

Ra , r a cos , A r a , A sin
A


          , (2.2) 

with 'a' representing the linear eccentricity of the ellipses,   the geometric mean, and A 
denoting the arithmetic mean of the focal rays of the ellipses.  is the distance of a point 

on an ellipse from the axis of symmetry of the ellipsoid. We refer to 
Ra  as the elliptic 

parameter. If we set a 0 , we obtain a spherical line element from (2.1). 

As we will show later, the geometry of the ellipsoid already contains elements that 
refer to the rotational model. The elliptical factor allows the following reformulation: 

 
2 2

2 2 2 2

R 2 2 2

a a
a 1 sin 1 ,

A A A


        . (2.3) 

Here,  is the angular velocity of an observer following the rotational forces of the Kerr 
field1. 

The ellipses and hyperbolae have curvature vectors 

    
3 3

E H E H 2
,0,0 , 0, ,0 , ,

rA a sin cos

 
      

 
. (2.4) 

The angles of ascent of the curvature vectors are represented by  E E r,     and 

 H H r,    . Since the elliptic and hyperbolic curves are orthogonal trajectories, 

E Hd d d       applies. With the relations 

 
r A

sin sin , cos cos     
 

, (2.5) 

the derivatives of the angle   can be calculated. We exclusively use the 3-beine 

 
i

i 1 2 3

R

1 1 1
e , , ,

a r




  
        

    
. (2.6) 

By differentiating (2.5), we finally obtain 
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 |

H E

1 1
, ,0



 
   

  
  (2.7) 

and 

 2 3 2 3

E|1 E 3 H|2 H 31 , 1 

 
          , (2.8) 

where the quantities   are rotational, which will be discussed in detail. First, we will 
discuss how they are generated. 

The elliptical and hyperbolic curves both have evolutes; they themselves are the 
evolvents of these evolutes. The curvature vectors (2.4) are normal to the evolvents in 
each case but are tangent to the evolutes. More precisely, the starting point of the 
curvature vectors lies on the evolutes. Together with the evolvents, they form a polar 
coordinate system, whereby it should be noted that the poles are not fixed but move on the 
evolutes when the tips of the curvature vectors move on the evolvents. This movement 
results in rotational contributions due to the changes in the radii of curvature, according to 
(2.8). 

We use the Ricci-rotation coefficients to formulate the field quantities. Their 
components are the curvature quantities, i.e., the reciprocal values of the radii of 
curvature. If we read off the 3-beine from (2.1), considering (2.2), and use them to 
calculate the Ricci-rotation coefficients, we have the following components for the 
curvatures of the ellipses, hyperbolae, and circles of the ellipsoids of revolution 

 
E H

1 1 1 1
B ,0,0 , N 0, ,0 , C sin , cos ,0

  

     
         

       
. (2.9) 

These expressions have to be differentiated to calculate the field quantities. From 
(2.8), it follows that rotational terms occur in the Einstein tensor. We will now deal with 
these in more detail. 

Here, we must anticipate the rotational properties of the Kerr model. We have 
already stated in (2.3) that the elliptical geometry provides an expression for the orbital 
velocity of a rotating observer in the Kerr field. According to (2.3), the angular velocity 

 r   depends on the distance from the axis of symmetry in such a way that the 

angular velocity becomes 0  for r  . Therefore, we have a differential rotation law 
with the convenient property that the orbital velocity decreases outwardly and vanishes at 
infinity. 

Considering the last equation in (2.2), 

   | | |2|
, 0

 
       ,  

two quantities can be designed 

 
2 2

3 R | 3 R |H i , D i
   
       .  (2.10) 

The first is the relativistic generalization of the Coriolis force; the second is a shear force. 
The latter is formed because observers closer to the inside are faster than those on the 
outside. This means that such observers slide each other by. 

The definitions (2.2) result in 

 
| |2
 

      (2.11) 
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which means that 13 13 31D 2H , D 0

  . This numerical relation simplifies the calculations 

but hides the geometric content. Finally, we obtain the quantities 

 
   3 13 23 3 13 23

3 3

3 13 13 23 23 3 13 13 23 23

H ,H , H , H

H H H H , H H H H

 

 

 

    

       
, (2.12) 

where, from now on, we will use tildes to indicate that the quantities mentioned refer to the 
flat auxiliary geometry. 

We must add a time-like element to the metric (2.1) using the original Minkowski 

notation  4x i c t  to get closer to the actual Kerr metric. Furthermore, on the  r, -

section of the ellipsoid of revolution, we pull up a surface that has an elliptical cross-
section and is reduced to Flamm's paraboloid if we set the rotation parameter a 0 , and 

on the r, -section, we pull up a surface with a circular cross-section. 

Together, the surfaces result in the Kerr surface, which is very close to the Kerr 
geometry. According to [1], the metric has the form 

  
22 2 2 2 2 2 2 2 2

S R Sds a dr d d a idt        , (2.13) 

where the newly occurring factor is given by 

 
1 2 2 2

S S S

A
, a , r a 2Mr       


. (2.14) 

Reading the 4-beine from (2.13), using it to calculate the Ricci-rotation coefficients and 
finally the Ricci, we obtain a collection of terms on the right-hand side of the Einstein 
tensor, which are difficult to understand and form the stress-energy-momentum tensor of 
the auxiliary model. We prefer a different procedure based on the possibility of embedding 
the Kerr geometry in a 5-dimensional flat space. 

For the 5-dimensional field quantities, we set 

  

 

a a

E E H

a |a

a

S S S

1 1 1
B sin ,cos ,0,0,0 , N 0,0, ,0,0

1
C sin sin ,cos sin ,cos ,0,0

1 1 1
E , tan ,0,0,0 cos , sin ,0,0,0

cos

   
      

     

      


   
          

      

. (2.15) 

The index sequence is  a 0,1,...,4 . The 0-th dimension is the extra dimension. E is the 

force of gravity, which is calculated from the factor 
Sa  of the metric (2.13). Furthermore, 

the radius of curvature of the time-like pseudocircle 
S cos   is defined with 

 
2 2

2 2

S 2 2

2r r a
,

M r a


     


.  

The new angular functions in (2.15) have the meaning 

 1

S S S

r 2M
cos a , sin v

A r

        , (2.16) 
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where 
Sv  is the fall velocity of an observer in the Kerr field and 

S  the associated Lorentz 

factor. For further details, we refer again to [1]. 

The 5-dimensional Ricci can be calculated with the quantities (2.15), where 
abR 0  

applies due to the flatness of the embedding space. For the dimensional reduction, we 
collect all 0-terms on the right-hand side of the equation and obtain geometrically 
interpretable quantities for the stress-energy momentum tensor of the auxiliary model via 
the Einstein tensor. 

As indicated above, rotational quantities already appear in the static auxiliary model. 
It is also noteworthy that the stress-energy-momentum tensor can be built up from such 
quantities via the Ricci. There are complicated relations between the 0-quantities and the 
rotational quantities, as noted in [1] and the mathematical appendix in [1]. After laborious 
conversions, we finally find2 

 

13 13

23 23

rs s

rs s

rs s

rs s

2

mn (m n)

2H H

2H

2FF

2FF

H
R sin 2F E



 

 

 
 
   
 
 
  

, (2.17) 

where  m 1,2,...,3 . We have developed the static auxiliary model to such an extent that 

we can take the next step towards the actual Kerr model. 

 

3. THE IMPLEMENTATION OF THE ROTATION 

 

The essential step towards a rotating model is the introduction of an anholonomic 
transformation that contains the orbital velocity of the corotating observers. It operates on 
the bein vectors of the static metric 

 
m m

i' i i i ' i 'k '

i i i ' i ' ik ik i 'k 'm m
e e , e e , g g       (3.1) 

and has the form 

 

3' 3' 4 ' 2 4'

3 R 4 R 3 R 4 R

3 3 4 2 4

3' R 4' R 3' R 4' R

, i , i ,

, i , i ,

             

             
  (3.2) 

with the quantities known from section 2. This leads to the metric 

 
2 22 1 2 3 4 2 3 4

R R S R R

2 2

ds dx dx dx i dx a i dx dx                    (3.3) 

which is much more expressive than the metric in Boyer-Lindquist form. The anholonomic 
differentials are given by 

   1 2 3 4

S R Sdx a dr, dx d , dx d , dx di idt            . (3.4) 

It is easy to convince oneself that the rotation is genuine, i.e., that it cannot be eliminated 
by a Lorentz transformation of the observer system. This is provided by the anholonomy of 
the transformation (3.2), specifically by 

                                            
2
 Note that the quantities without tildes include the factor

S
a . 
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 j j

[k' |i '] |[k' |i ']x 0   . (3.5) 

We define the tetrad object of anholonomy with 

 
si ' k 's j ' j

mn j ' j [k' |i ']
m n
e e e      (3.6) 

and thus arrive at the Ricci-rotation coefficients of Kerr geometry 

 s s s

mn mn mn mns mns smn nsmA *A ,       . (3.7) 

Here, A  are the connexion coefficients of the static auxiliary model. Surprisingly, the 

emerging terms of the Ricci can be completely separated from those of the static model. 
We have 

 
mn mn mnR R R   . (3.8) 

We have examined such a decomposition in general form in [2]. 

After treating the s

mn  using (3.6) and (2.3), the following Maxwell-like equations 

are obtained 

 

s C sr

33 ||s rs C

s 3s

34 C3||s s C

s C sr

44 ||s rs C

R F

R 2F H

R F







     

  

  

  (3.9) 

with the quantities3 

 
   3

C 32 C3 13 23

C sr 2

rs C 13 13 23 23

H 0,H cos , H ,H cos

2 H H H H cos

     

      

 (3.10) 

explained in more detail in [1]. 

The second part of the Ricci contains only rotational field strengths. Solving the 

equations (3.9) first leads to 
34R 0  , while the rest of the rotational Ricci gives the 

relation (2.17) with a negative sign, so that (3.8) is fulfilled and, as expected, a vacuum 
solution is provided. 

 

4. CONCLUSIONS 

 

We showed that the Ricci of the Kerr model can be divided into two parts, one 
corresponding to the static part of the Kerr metric and the second to the rotational part. 
This enhances the understanding of the Kerr model. However, the method could still help 
find the interior Kerr metric, which has been sought for years. For the auxiliary static model 
of an interior solution, we have proposed the cap of an ellipsoid [3], whose stress-energy 
momentum tensor is conserved. Hopefully, this approach can be extended to a complete 
model via anholonomic transformation. A suitable differential rotation law would have to be 

                                            
3
 The somewhat seemingly strange structures result from merging the quantities D with H according to (2.10) 

and (2.11). 
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found whose orbital velocity follows the exterior solution but decreases towards the interior 
and vanishes at the axis of rotation. 
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